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SUMMARY

This paper is concerned with the problem of shape optimization of two-dimensional flows governed by the
time-dependent Navier–Stokes equations. We derive the structures of shape gradients for time-dependent
cost functionals by using the state derivative and its associated adjoint state. Finally, we apply a gradient-
type algorithm to our problem, and numerical examples show that our theory is useful for practical
purposes and the proposed algorithm is feasible in low Reynolds number flows. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of finding the optimal design of a system governed by the incompressible Navier–
Stokes equations arises in many design problems in aerospace, automotive, hydraulic, ocean,
structural, and wind engineering. Example applications include aerodynamic design of automotive
vehicles, trains, low-speed aircraft, sails, and hydrodynamic design of ship hulls, turbomachinery,
and offshore structures. In many cases, the flow equations do not admit steady-state solutions, and
the optimization model must incorporate the time-dependent form of the Navier–Stokes equations.

Optimal shape design has received considerable attention already. Early works concerning the
existence of solutions and differentiability of the quantity (such as, state, cost functional, etc.)
with respect to shape deformation occupied most of the 1980s (see [1–5]), the stabilization of
structures using a boundary variation technique has been fully addressed in [2, 4, 5]. However, a few
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studies have considered the shape optimization of time-dependent flows (see [6–9]). Our concern
in this article is on shape sensitivity analysis of time-dependent Navier–Stokes flow with small
regularity data, and on deriving an efficient numerical approach for the solution of two-dimensional
realizations of such problems.

In [?], we use the state derivative approach to solve a shape optimization problem governed
by a Robin problem, and in [11, 12], we derive the expression of shape gradients for Stokes and
Navier–Stokes optimization problem by this approach, respectively. In this paper, we use this
approach and a weak implicit function theorem to derive the structures of shape gradients with
respect to the shape of the variable domain for some given cost functionals in shape optimization
problems for time-dependent Navier–Stokes flow with small regularity data.

This paper is organized as follows. In Section 2, we briefly recall the velocity method which is
used for the characterization of the deformation of the shape of the domain and give the definitions
of Eulerian derivative and shape derivative. We also give the description of the shape optimization
problem for the time-dependent Navier–Stokes flow.

In Section 3, we employ the weak implicit function theorem to prove the existence of the
weak Piola material derivative, and then give the description of the shape derivative. After that,
we express the shape gradients of some typical cost functionals by introducing the corresponding
linear adjoint state systems.

Finally in Section 4, we propose a gradient-type algorithm with some numerical examples to
prove that our theory could be very useful for the practical purpose and the proposed algorithm is
efficient in low Reynolds number flow.

2. PRELIMINARIES AND STATEMENT OF THE PROBLEM

2.1. Elements of the velocity method and notations

Domains � do not belong to a vector space and this requires the development of shape calculus to
make sense of a ‘derivative’ or a ‘gradient’. To realize it, there are about three types of techniques:
Hadamard [13] normal variation method, the perturbation of the identity method by Simon [14]
and the velocity method (see Céa [1], Delfour and Zolésio [2], and Zolésio [15]). We will use the
velocity method that contains the others. For that purpose, we choose an open set D in RN with the
boundary �D piecewise Ck , and a velocity space V∈Ek :={V∈C([0,ε];Dk(D̄,RN )) :V ·n�D =
0 on �D}, where ε is a small positive real number and Dk(D̄,RN ) denotes the space of all k-times
continuous differentiable functions with compact support contained in RN . The velocity field

V(s)(x)=V(s, x), x ∈D, s�0

belongs to Dk(D̄,RN ) for each s. It can generate transformations

Ts(V)X = x(s, X), s�0, X ∈D

by the following dynamical system:

dx

ds
(s, X) = V(s, x(s))

x(0, X) = X
(1)
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with the initial value X given. We denote the ‘transformed domain’ Ts(V)(�) by �s(V) at s�0,
and also set ��s :=Ts(��).

There exists an interval I =[0,�), 0<��ε, and a one-to-one map Ts from D̄ onto D̄ such that:

(i) T0= I;
(ii) (s, x) �→Ts(x) belongs to C1(I ;Ck(D;D)) with Ts(�D)=�D;
(iii) (s, x) �→T−1

s (x) belongs to C(I ;Ck(D;D)).

Such transformations are well studied in [2].
Furthermore, for sufficiently small s>0, the Jacobian Js is strictly positive:

Js(x) :=det |DTs(x)|=det DTs(x)>0 (2)

where DTs(x) denotes the Jacobian matrix of the transformation Ts evaluated at a point x ∈D
associated with the velocity field V. We will also use the following notation: DT−1

s (x) is the
inverse of the matrix DTs(x) , ∗DT−1

s (x) is the transpose of the matrix DT−1
s (x). These quantities

also satisfy the following lemmas.

Lemma 2.1 (Sokolowski and Zolésio [5])
For anyV∈Ek , DTs and Js are invertible. Moreover, DTs , DT−1

s are inC1([0,ε];Ck−1(D̄;RN×N )),
and Js , J−1

s are in C1([0,ε];Ck−1(D̄;R))

Lemma 2.2 (Sokolowski and Zolésio [5])
u is assumed to be a vector function in C1(D)N .

(1) D(T−1
s )◦Ts =DT−1

s ;
(2) D(u◦T−1

s )=(Du·DT−1
s )◦T−1

s ;
(3) (Du)◦Ts =D(u◦Ts) ·DT−1

s .

Now let J (�) be a real-valued functional associated with any regular domain �, we say that
this functional has a Eulerian derivative at � in direction V if the limit

lim
s↘0

J (�s)− J (�)

s
:=dJ (�;V)

exists.
Furthermore, if the map

V �→dJ (�;V) :Ek →R

is linear and continuous, we say that J is shape differentiable at �. In the distributional sense
we have

dJ (�;V)=〈∇ J,V〉Dk(D̄,RN )′×Dk (D̄,RN ) (3)

When J has a Eulerian derivative, we say that ∇ J is the shape gradient of J at �.
Before closing this subsection, we introduce the following functional spaces that will be used

throughout this paper:

H(div�) :={u∈L2(�)N :divu=0 in �,u·n=0 on ��}
H1
0 (div,�) :={u∈H1(�)N :divu=0 in �,u|�� =0}
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Given T>0, we introduce the notation L p(0,T ; X) which denotes the space of L p integrable
functions f from [0,T ] into the Banach space X with the norm

‖ f ‖L p(0,T ;X) =
(∫ T

0
‖ f ‖p

X dt

)1/p

, 1�p<+∞

We also denote by L∞(0,T ; X) the space of essentially bounded functions f from [0,T ] into X ,
and equipped with the Banach norm

ess sup
t∈[0,T ]

‖ f (t)‖X

2.2. Statement of the shape optimization problem

In two dimensions, we consider a typical problem in which a solid body S with the boundary �S
is located in an external flow. Since the flow is in an unbounded domain, we reduce the problem
to a bounded domain D by introducing an artificial boundary �D on which we set the speed flow
y=y∞. � :=D\S is the effective domain with its boundary ��=�S∪�D. The state equations of
the flow can be expressed by the Navier–Stokes equations in the non-dimensional form:

�ty−��y+Dy ·y+∇ p = f in Q :=�×(0,T )

divy = 0 in Q

y = y∞ on �D×(0,T )

y = 0 on �S×(0,T )

y(0) = y0 in �∫
�
pdx = 0 on (0,T )∫

�D
y∞·nds = 0 on (0,T )

(4)

where the last relation is needed in view of the incompressibility constraint divy=0; � stands for
the inverse of the Reynolds number whenever the variables are appropriately non-dimensionalized,
y, p, and f are the velocity, pressure, and the given body force per unit mass, respectively.

Our goal is to optimize the shape of the boundary �S that minimizes a given cost functional J
depending on the fluid state. The cost functional may represent a given objective related to specific
characteristic features of the fluid flow (e.g. the deviation with respect to a given target velocity,
the drag, the vorticity, etc.).

Hence, we are interested in solving the following minimization problem:

min
�∈O

J1(�)= 1

2

∫ T

0

∫
�

|y−yd |2 dx dt (5)

or

min
�∈O

J2(�)= �

2

∫ T

0

∫
�

|curly|2 dx dt (6)
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where y is satisfied by the full Navier–Stokes system (4) and yd is the target velocity given by
the engineers. We also note that the boundary �D is fixed in our optimization problems and an
example of the admissible set O is

O :=
{
�⊂RN :�D is fixed,

∫
�
dx=constant

}

In order to deal with the non-homogeneous Dirichlet boundary condition on �D, let the vectorial
function h be the solution of

divh = 0 in �

h = y∞ on �D

h = 0 on �S

(7)

then we can choose an extension h with h=0 in the body S.
Now we may look for a solution of the non-homogeneous Navier–Stokes equations in the form

y=h+ ỹ (8)

with ỹ vanishing on the boundary of the domain �. Substituting (8) in system (4), we find the
following equations for ỹ:

�t ỹ−��ỹ+Dỹ· ỹ+Dỹ·h+Dh· ỹ+∇ p = F in Q

div ỹ = 0 in Q

ỹ = 0 on ��×(0,T )

ỹ(0) = ỹ0 in �

(9)

where F := f+��h−Dh·h and ỹ0 :=y0−h.
For the existence and uniqueness of the solution of the full Navier–Stokes system (9), we have

the following results (see [16]).
Theorem 2.1
The domain � is supposed to be piecewise C1. We assume that

f,�t f∈L2(0,T ;H(div ,D)) (10)

y0∈H2(D)N ∩H1
0 (div ,D) (11)

y∞ ∈H3/2(�D)N (12)

the solution of (4) is unique and satisfies

ỹ,�t ỹ∈L2(0,T ;H1
0 (div ,�))∩L∞(0,T ;H(div ,�))

Moreover, if � is of class C2 and f∈L∞(0,T ;H(div ,D)), then the function ỹ∈L∞(0,T ;
H2(�)N ).
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3. STATE DERIVATIVE APPROACH

In this section, we shall prove the main theorem using an approach based on the differentiability
of the solution of the Navier–Stokes system (9) with respect to the variable domain. To begin with,
we use the Piola transformation to bypass the divergence-free condition and then derive a weak
material derivative by the weak implicit function theorem. Finally, we will derive the structure of
the shape gradients of the cost functionals by introducing the associated adjoint state equations.

3.1. Piola material derivative

From now on, we assume that � is of class C1 and (10)–(12) hold. Then we say that the function
ỹ∈L2(0,T ;H1

0 (div ,�)) is called a weak solution of problem (9) if it satisfies

〈e(ỹ),w〉=0, w∈L2(0,T ;H1
0 (div ,�)) (13)

with e(ỹ) :=(e1(ỹ),e2(ỹ)), 0 :=(0,0), and

〈e1(ỹ),w〉 :=
∫ T

0

∫
�
(�t ỹ ·w+�Dỹ :Dw+Dỹ· ỹ ·w+Dỹ·h·w+Dh· ỹ·w−F ·w)dx dt (14)

〈e2(ỹ),w〉 :=
∫

�
(ỹ(0)− ỹ0) ·w(0)dx (15)

It must be considered that the divergence-free condition is variant with respect to the use of the
transformation Ts during the derivation of the shape gradient for the cost functional. Therefore, we
need to introduce the well-known Piola transformation that preserves the divergence-free condition.

Lemma 3.1 (Boisgerault [17])
The Piola transform

�s :H(div ,�) �→H(div ,�s)

u �→((Js)
−1DTs ·u)◦T−1

s

is an isomorphism.

Now by the transformation Ts , we consider the solution ỹs defined on�s×(0,T ) of the perturbed
weak formulation ∫ T

0

∫
�s

(�t ỹs ·ws+�Dỹs :Dws+Dỹs · ỹs ·ws+Dỹs ·h·ws

+Dh· ỹs ·ws−F ·ws)dx dt=0 (16)

∫
�s

(ỹs(0)− ỹ0) ·ws(0)dx=0 (17)
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for all ws ∈L2(0,T ;H1
0 (div ,�s)), and introduce ỹs =�−1

s (ỹs),ws =�−1
s (ws) defined on Q. Then

we replace ỹs , ws by �s(ỹs),�s(ws) in the weak system (16), (17):

∫ T

0

∫
�s

[�t�s(ỹs) ·�s(ws)+�D(�s(ỹs)) :D(�s(ws))

+D(�s(ỹs)) ·�s(ỹs) ·�s(ws)+D(�s(ỹs)) ·h·�s(ws)

+Dh·�s(ỹs) ·�s(ws)−F ·�s(ws)]dx dt=0 (18)∫
�s

[�s(ỹs(0))− ỹ0]·�s(ws(0))dx=0 (19)

for all ws ∈L2(0,T ;H1
0 (div ,�)).

Using a back transport into � and employing Lemma 2.2, we obtain the following weak
formulation:

〈e(s, ỹs),ws〉=0 ∀ws ∈L2(0,T ;H1
0 (div ,�)) (20)

with the notation e :=(e1,e2), where

〈e1(s,v),w〉 :=
∫ T

0

∫
�

�t (B(s)v) ·(DTsw)dx dt

+�
∫ T

0

∫
�
D(B(s)v) : [D(B(s)w) ·A(s)]dx dt+

∫ T

0

∫
�
D(B(s)v) ·v ·(B(s)w)dx dt

+
∫ T

0

∫
�
D(B(s)v) ·h·(B(s)w)dx dt+

∫ T

0

∫
�
D(B(s)h) ·v ·(B(s)w)dx dt

−
∫ T

0

∫
�
(F◦Ts) ·(DTs ·w)dx dt (21)

and

〈e2(s,v),w〉 :=
∫

�
(B(s)v(0)− ỹ0◦Ts) ·(DTsw(0))dx (22)

and

A(s) := JsDT
−1
s

∗DT−1
s , B(s)s := J−1

s DTs ·s
Now we are interested in the differentiability of the mapping

s �→ ỹs =�−1
s (ỹs) : [0,ε] �→L2(0,T ;H1

0 (div ,�))

where ε>0 is sufficiently small and ỹs is the solution of the weak formulation

〈e(s,v),w〉=0 ∀w∈L2(0,T ;H1
0 (div ,�)) (23)
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In order to prove the differentiability of ỹs with respect to s in a neighborhood of s=0, there may
be two approaches:

(i) Analysis of the differential quotient: lims→0(ỹs− ỹ)/s;
(ii) derivation of the local differentiability of the solution ỹ associated with the implicit equation

(13).

We use the second approach. Since f∈L2(0,T ;H(div ,D)), we deduce that (f◦Ts−f)/s weakly
converges to Df ·V in L2(0,T ;H−1(D)N ) as s goes to zero. Thus, we cannot use the classical
implicit function theorem, since it requires strong differentiability results in H−1. Hence, we
introduce the following weak implicit function theorem.

Theorem 3.1 (Zolésio [15])
Let X , Y ′ be two Banach spaces, I an open bounded set in R, and consider the map

(s, x) �→e(s, x) : I ×X �→Y ′

If the following hypotheses hold:

(i) s �→〈e(s, x), y〉 is continuously differentiable for any y∈Y and (s, x) �→〈�se(s, x), y〉 is
continuous;

(ii) there exists u∈ X such that u∈C0,1(I ; X) and e(s,u(s))=0, ∀s∈ I ;
(iii) x �→e(s, x) is differentiable and (s, x) �→�xe(s, x) is continuous;
(iv) there exists s0∈ I such that �xe(s, x)|(s0,x(s0)) is an isomorphism from X to Y ′,

the mapping

s �→u(s) : I �→ X

is differentiable at s=s0 for the weak topology in X and its weak derivative u̇(s) is the solution of

〈�xe(s0,u(s0)) · u̇(s0), y〉+〈�se(s0,u(s0)), y〉=0 ∀y∈Y

We may now state the main theorem of this section.

Theorem 3.2
We assume that the domain � is piecewise C1 and (10)–(12) hold, ỹ∈L2(0,T ;H1

0 (div ,�)) is the
solution of the weak formulation (13). Then the weak Piola material derivative ˙̃yP :=�s(ỹs)|s=0
exists and is characterized by the following weak formulation:

〈�ve(0,v)|v=ỹ · ˙̃yP ,w〉+〈�se(0, ỹ),w〉=0 ∀w∈L2(0,T ;H1
0 (div ,�)) (24)

i.e. ∫ T

0

∫
�
[�t ˙̃yP ·w+�D ˙̃yP :Dw+D ˙̃yP · ỹ·w+Dỹ· ˙̃yP ·w+D ˙̃yP ·h·w+Dh· ˙̃yP ·w]dx dt

=−
∫ T

0

∫
�
[�t ((DV− divV)ỹ) ·w+�t ỹ·DV ·w]dx dt

−�
∫ T

0

∫
�
D((DV− divV)ỹ) :Dwdx dt
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−�
∫ T

0

∫
�
Dỹ : [D((DV− divV)w)+Dw ·(divV−DV−∗DV)]dx dt

−
∫ T

0

∫
�
[D((DV− divV)(ỹ+h)) · ỹ·w+D(ỹ+h) · ỹ·((DV− divV)w)]dx dt

−
∫ T

0

∫
�
[D((DV− divV)ỹ) ·h·w−Dỹ·h·((DV− divV)w)]dx dt

+
∫ T

0

∫
�
(∗DV ·(f+��h−Dh·h)+D(f+��h−Dh·h) ·V) ·wdx dt

+
∫ T

0

∫
�
(f+��h−Dh·h) ·(DV ·w)dx dt (25)

and ∫
�

˙̃yP(0) ·w(0)dx=−
∫

�
[(DV+∗DV− divV I) · ỹ(0)−(Dỹ0V+∗DVỹ0)]·w(0)dx (26)

Proof
In order to apply Theorem 3.1, we need to verify the four hypotheses of Theorem 3.1 for the mapping

(s,v) �→e(s,v) : [0,ε]×L2(0,T ;H1
0 (div ,�)) �→L2(0,T ;H1

0 (div ,�)′)

To begin with, since � is of piecewise C1, the mapping Ts ∈C1([0,ε];C1(D,D)). Then by
Lemma 2.1, the mapping

s �→〈ei (s,v),w〉 : [0,ε] �→R (i=1,2)

is C1 for any v,w∈L2(0,T ;H1
0 (div ,�)). On the other hand, since f∈L2(0,T ;H(div ,D)), the

mapping s �→ f◦Ts is only weakly differentiable in H−1; thus, the mapping s �→e1(s,v) is weakly
differentiable, and then s �→e(s,v) is weakly differentiable.

Since we have the following identities by simple calculation:

d

ds
DTs =(DV(s)◦Ts)DTs (27)

d

ds
Js =(divV(s))◦Ts Js (28)

d

ds
(f◦Ts)=(Df ·V(s))◦Ts (29)

the weak derivative of ei (s,v)(i=1,2) can be expressed as

〈�se1(s,v),w〉 =
∫ T

0

∫
�
[�t (B ′(s)v) ·(DTsw)+�t (B(s)v) ·(DV(s)◦Ts) ·DTs ·w]dx dt

+�
∫ T

0

∫
�
D(B ′(s)v) : [D(B(s)w) ·A(s)]dx dt
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+�
∫ T

0

∫
�
D(B(s)v) : [D(B ′(s)w) ·A(s)+D(B(s)w) ·A′(s)]dx dt

+
∫ T

0

∫
�
[D(B ′(s)v) ·v ·(B(s)w)+D(B(s)v) ·v ·(B ′(s)w)]dx dt

+
∫ T

0

∫
�
[D(B ′(s)v) ·h·(B(s)w)+D(B(s)v) ·h·(B ′(s)w)]dx dt

+
∫ T

0

∫
�
[D(B ′(s)h) ·v ·(B(s)w)+D(B(s)h) ·v ·(B ′(s)w)]dx dt

−
∫ T

0

∫
�
[∗DV(s) ·F+DF ·V(s)]◦Ts ·(DTsw)dx dt

−
∫ T

0

∫
�
(F◦Ts) ·[(DV(s)◦Ts) ·DTs ·w]dx dt (30)

and

〈�se2(s,v),w〉 =
∫

�
{[B ′(s)v(0)−(Dỹ0 ·V(s))◦Ts]·(DTsw(0))

+(B(s)v(0)− ỹ0◦Ts) ·[(DV(s)◦Ts) ·DTs ·w(0)]}dx (31)

where

B ′(s)s := �
�s

[B(s)s]=[DV(s)◦Ts−(divV(s)◦Ts)I]B(s)s

A′(s) := �
�s

A(s)=[divV(s)◦Ts−DT−1
s DV(s)◦Ts]A(s)−∗[DT−1

s DV(s)◦Ts A(s)]

Obviously, the mapping (s,v) �→�se(s,v) is continuous, and when we take s=0, we have

B ′(0)s=(DV− divVI) ·s
A′(0)= divVI−DV−∗DV

and then

〈�se1(0,v),w〉 =
∫ T

0

∫
�
[�t ((DV− divV)v) ·w+�tv ·DV ·w]dx dt

+�
∫ T

0

∫
�
D((DV− divV)v) :Dwdx dt

+�
∫ T

0

∫
�
Dv : [D((DV− divV)w)+Dw ·(divV−DV−∗DV)]dx dt
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+
∫ T

0

∫
�
[D((DV− divV)(v+h)) ·v ·w+D(v+h) ·v ·((DV− divV)w)]dx dt

+
∫ T

0

∫
�
[D((DV− divV)v) ·h·w+Dv ·h·((DV− divV)w)]dx dt

−
∫ T

0

∫
�
F ·(DV ·w)dx dt−

∫ T

0

∫
�
(∗DV ·F+DF ·V) ·wdx dt (32)

〈�se2(0,v),w〉=
∫

�
[(DV+∗DV− divV) ·v(0) ·w(0)−(Dỹ0V+∗DVỹ0) ·w(0)]dx (33)

To verify (ii), we follow the same steps described in Dziri [18] to find that the mapping s �→ ỹs ◦Ts
is Lipschitz continuous which is the direct consequence of the uniqueness of the solution of the
Navier–Stokes system, i.e. Theorem 2.1.

It is easy to check that the mappings

v �→e1(s,v) : L2(0,T ;H1
0 (div ,�))→L2(0,T ;H1

0 (div ,�)′)

v �→e2(s,v) :H1
0 (div ,�)→H1

0 (div ,�)′

are differentiable, and the derivatives of ei (s,v) with respect to v in the direction �v are

〈�ve1(s,v) ·�v,w〉 =
∫ T

0

∫
�

�t (B(s)�v) ·(DTsw)dx dt

+�
∫ T

0

∫
�
D(B(s)�v) : [D(B(s)w) ·A(s)]dx dt

+
∫ T

0

∫
�
[D(B(s)�v) ·v ·(B(s)w)+D(B(s)v) ·�v ·(B(s)w)]dx dt

+
∫ T

0

∫
�
[D(B(s)�v) ·h·(B(s)w)+D(B(s)h) ·�v ·(B(s)w)]dx dt (34)

and

〈�ve2(s,v) ·�v,w〉=
∫

�
(B(s)�v(0)) ·(DTs ·w(0))dx (35)

The continuity of (s,v) �→�vei (s,v) is easy to check. Moreover,

〈�ve1(0,v) ·�v,w〉 =
∫ T

0

∫
�
[�t (�v) ·w+�D(�v) :Dw+D(�v) ·v ·w

×Dv ·�v ·w+D(�v) ·h·w+Dh·�v ·w]dx dt (36)

〈�ve2(0,v) ·�v,w〉=
∫

�
�v(0) ·w(0)dx (37)
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Furthermore, �v→�ve(0,v) ·�v is an isomorphism that follows from the uniqueness and existence
of the Navier–Stokes system, i.e. Theorem 2.1. Indeed, we assume that ỹ1, ỹ2 are two solutions
of the Navier–Stokes system (9), and ỹi (i=1,2) satisfies the weak formulation (13). It is obvious
that ŷ= ỹ1− ỹ2 satisfies∫ T

0

∫
�
[�t ŷ ·w+�Dŷ :Dw+Dŷ·h·w+Dh· ŷ·w+Dŷ· ỹ1 ·w+Dỹ2 · ŷ·w]dx dt=0 (38)

and ∫
�
ŷ(0) ·w(0)dx=0 (39)

Now let w= ŷ, we can follow the proof of the unique solvability of the unsteady Navier–Stokes
equations (see Temam [16]) and obtain

|ŷ(t)|2�0 ∀t ∈[0,T ]
Thus ỹ1= ỹ2. Similar a priori estimates hold for �v and the uniqueness of the solution of system
(36), (37) is obtained.

Finally, all the hypotheses are satisfied by (20), we can apply Theorem 3.1 to (20) and then use
(32), (33), (36), and (37) to obtain (25) and (26). �

3.2. Shape derivative

In this subsection, we will characterize the shape derivative ỹ′, i.e. the derivative of the state ỹ
with respect to the shape of the variable domain.

Theorem 3.3
Under the assumption of Theorem 2.1 and moreover assume that � is of class C2, ỹ∈
L∞(0,T ;H2(�)N ∩H1

0 (div ,�)) solves the weak formulation (13) and ỹs solves the perturbed
weak formulation (16) (17) in �s×(0,T ), then the shape derivative

ỹ′ := lim
s→0

ỹs− ỹ
s

exists and is characterized as the solution of

�t ỹ′−��ỹ′+Dỹ′ · ỹ+Dỹ· ỹ′+Dỹ′ ·h+Dh· ỹ′+∇ p′ = 0 in Q

div ỹ′ = 0 in Q

ỹ′ = −(Dỹ·n)Vn on �S×(0,T )

ỹ′ = 0 on �D×(0,T )

ỹ′(0) = 0 in �

(40)

Proof
Since � is of class C2 and V∈E2, �s has the same regularity than � for any s∈(0,�), then
ỹs ∈L∞(0,T ;H2(�s)

N ) satisfies the following weak formulation:∫ T

0

∫
�s

(�Dỹs :Dw+Dỹs · ỹs ·w+Dỹs ·h·w+Dh· ỹs ·w−F ·w)dx dt=0 (41)
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∫
�s

ỹs(0) ·w(0)dx=0 (42)

for any w∈L2(0,T ;H1
0 (div ,�s)). Moreover, we have �t ỹs ∈L2(0,T ;H1

0 (div ,�)).
To begin with, we introduce the following Hadamard formula (see [2, 5]):

d

ds

∫
�s

g(s, x)dx=
∫

�s

�g
�s

(s, x)dx+
∫

��s

g(s, x)V ·ns d�s (43)

for a sufficiently smooth functional g : [0,�]×RN →R.
Now we set a function u∈D(Q)N+1 and divu(x, t)=0 in � for a.e. t ∈(0,T ). Obviously when

s is sufficiently small, u(t) belongs to the Sobolev space H1
0 (div ,�s)∩H2(�s)

N for a.e. t ∈(0,T ).
Hence, we can use (43) to differentiate (41), (42) with w=u:∫ T

0

∫
�
(�t ỹ′+�Dỹ′ :Du+Dỹ′ · ỹ·u+Dỹ· ỹ′ ·u+Dỹ′ ·h·u+Dh· ỹ′ ·u)dx dt

+
∫ T

0

∫
��

(�Dỹ :Du+Dỹ· ỹ ·u+Dỹ·h·u+Dh· ỹ·u−F ·u)Vn ds dt=0∫
�
ỹ′(0) ·u(0)dx+

∫
��

ỹs(0) ·u(0)Vn ds=0

Since u has a compact support, the boundary integrals vanish. Using integration by parts, we
obtain ∫ T

0

∫
�
(�t ỹ′−��ỹ′+Dỹ′ · ỹ+Dỹ· ỹ′+Dỹ′ ·h+Dh· ỹ′) ·udx dt=0 (44)

and ∫
�
ỹ′(0) ·u(0)dx=0 (45)

Then there exists some distribution p′ such that

�t ỹ′−��ỹ′+Dỹ′ · ỹ+Dỹ· ỹ′+Dỹ′ ·h+Dh· ỹ′ =−∇ p′

in the distributional sense in Q and ỹ′(0)=0 in � since u(0) is arbitrary.
Now we recall that for each sufficient small s, �−1

s (ỹs) belongs to the Sobolev space H1
0 (div ,�),

then we can deduce that its material derivative vanishes on the boundary �S. Thus, we obtain the
shape derivative of ỹ at the boundary �S:

ỹ′ =−Dỹ·V on �S×(0,T )

Since ỹ|�S×(0,T ) =0, we have Dỹ|�S×(0,T ) =Dỹ·n∗n, and then

ỹ′ =−(Dỹ·n)Vn on �S×(0,T )

Since �D is fixed, we obtain ỹ′ =0 on the boundary �D×(0,T ). �
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The shape derivative y′ of the solution y of the original Navier–Stokes system (4) is given by
ỹ′ =y′, then we obtain the following corollary by substituting ỹ′ =y′ and ỹ=y−h into (40).

Corollary 3.1
The shape derivative y′ of the solution y of (4) exists and satisfies the following system:

�ty′−��y′+Dy′ ·y+Dy ·y′+∇ p′ = 0 in Q

divy′ = 0 in Q

y′ = (−Dy ·n)Vn on �S×(0,T )

y′ = 0 on �D×(0,T )

y′(0) = 0 in �

(46)

3.3. Adjoint state system and gradients of the cost functionals

This subsection is devoted to the computation of the shape gradients for the cost functionals J1(�)

and J2(�) by the adjoint method.
For the cost functional J1(�)=∫ T

0

∫
�

1
2 |y−yd |2 dx dt , we have the following.

Theorem 3.4
Let � be of class C2, yd ∈L∞(0,T ; L2(D)N ), and V∈E2; the shape gradient ∇ J1 of the cost
functional J1(�) can be expressed as

∇ J1=[ 12 (y−yd)2+�(Dy ·n) ·(Dv ·n)]n (47)

where the adjoint state v satisfies the following linear adjoint system:

−�tv−��v−Dv ·y+∗Dy ·v+∇q = y−yd in Q

divv = 0 in Q

v = 0 on ��×(0,T )

v(T ) = 0 in �

(48)

Proof
Since J1(�) is differentiable with respect to y, and the state y is shape differentiable with respect
to s, i.e. the shape derivative y′ exists, we obtain the Eulerian derivative of J1(�) with respect
to s:

dJ1(�;V)=
∫ T

0

∫
�
(y−yd) ·y′ dx dt+

∫ T

0

∫
��

1

2
|y−yd |2Vn ds dt (49)

by the Hadamard formula (43).
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By the Green formula, we have the following identity:

∫ T

0

∫
�
[(�ty′−��y′+Dy′ ·y+Dy ·y′+∇ p′) ·w− divy′�]dx dt

=
∫ T

0

∫
�
[(−�tw−��w−Dw ·y+∗Dy ·w+∇�) ·y′− p′ divw]dx dt

+
∫ T

0

∫
��

(y′ ·w)(y ·n)ds dt+
∫ T

0

∫
��

(�Dw ·n−�n) ·y′ ds dt

+
∫ T

0

∫
��

(p′n−�Dy′n) ·wds dt+
∫

�
(y′(T ) ·w(T )−y′(0) ·w(0))dx (50)

Now we define (v,q) to be the solution of (48), use (46) and set (w,�)=(v,q) in (50) to obtain

∫ T

0

∫
�
(y−yd) ·y′ dx dt=−

∫ T

0

∫
�S

(�Dv ·n−qn) ·y′ ds dt (51)

Since y′ =(−Dy ·n)Vn on the boundary �S and divy′ =0 in �, we obtain the Eulerian derivative
of J1(�) from (49):

dJ1(�;V)=
∫ T

0

∫
�S

[
1

2
|y−yd |2+�(Dy ·n)·(Dv ·n)

]
Vn ds dt (52)

Since the mapping V �→dJ1(�;V) is linear and continuous, we obtain the expression (47) for the
shape gradient ∇ J1 by (3). �

For another typical cost functional J2(�)=(�/2)
∫ T
0

∫
� |curly|2 dx dt , we have the following

theorem.

Theorem 3.5
Let � be of class C2 and V∈E2, the cost functional J2(�) possesses the shape gradient ∇ J2
which can be expressed as

∇ J2=�[ 12 |curly|2+(Dy ·n) ·(Dv ·n−curly∧n)]n (53)

where the adjoint state v satisfies the following linear adjoint system:

−�tv−��v−Dv ·y+∗Dy ·v+∇q = −��y in Q

divv = 0 in Q

v = 0 on ��×(0,T )

v(T ) = 0 in �

(54)
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Proof
The proof is similar to that of Theorem 3.4. Using the Hadamard formula (43) for the cost functional
J2, we obtain the Eulerian derivative:

dJ2(�;V)=�
∫ T

0

∫
�
curly · curly′ dx dt+

∫ T

0

∫
��

�

2
|curly|2Vn ds dt (55)

Then, we define (v,q) to be the solution of (54), use (46) and set (w,�)=(v,q) in (50) to obtain

�
∫ T

0

∫
�

�y ·y′ dx dt=
∫ T

0

∫
�S

�(Dv ·n) ·y′ ds dt (56)

Applying the following vectorial Green formula:∫
�
(u·�w+ curlu · curlw+ divudivw)dx

=
∫

��
(u·(curlw∧n)+u·ndivw)ds

for vector functions y and y′, we obtain

∫ T

0

∫
�
(curly · curly′+�y ·y′)dx dt=

∫ T

0

∫
�S

(curly∧n) ·y′ ds dt (57)

Combining (55) and (56) with (57), we obtain the Eulerian derivative:

dJ2(�;V)=
∫ T

0

∫
�S

�

[
1

2
|curly|2+(D(y−g) ·n) ·(Dv ·n−curly∧n)

]
Vn ds dt

Finally, we arrive at the expression (53) for the shape gradient ∇ J2. �

4. GRADIENT ALGORITHM AND NUMERICAL SIMULATION

In this section, we will give a gradient-type algorithm and some numerical examples in two
dimensions to prove that our previous methods could be very useful and efficient for the numerical
implementation of the shape optimization problems for the unsteady Navier–Stokes flow. For the
sake of simplicity, we only consider the cost functional J (�)=∫ T

0

∫
� |y−yd |2 dx dt .

4.1. A gradient-type algorithm

As we have just seen, the general form of the Eulerian derivative is

dJ (�;V)=
∫ T

0

∫
�S

∇ J ·Vds dt
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where ∇ J denotes the shape gradient of the cost functional J . Ignoring regularization, a descent
direction is found by defining

V=−hk∇ J (58)

and then we can update the shape � as

�k =(I+hkV)� (59)

where hk is a descent step at kth iteration.
There are also other choices for the definition of the descent direction. Since the gradient of

the functional has necessarily less regularity than the parameter, an iterative scheme similar to the
method of descent deteriorates the regularity of the optimized parameter. We need to project or
smooth the variation into H1(�)2. Hence, the method used in this paper is to change the scalar
product with respect to which we compute a descent direction, for instance, H1(�)2. In this case,
the descent direction is the unique element d∈H1(�)2 such that at a fixed time t ∈[0,T ] and for
every V∈H1(�)2: ∫

�
Dd :DVdx=−

∫
�S

∇ J ·Vds (60)

The computation of d can also be interpreted as a regularization of the shape gradient, and the
choice of H1(�)2 as space of variations is more dictated by technical considerations rather than
theoretical ones.

The resulting algorithm can be summarized as follows:

(1) Choose an initial shape �0, i.e. choose an initial shape of �S since �D is fixed in our
problem;

(2) Compute the state system (4) and adjoint state system (48); then we can evaluate the descent
direction dk by using (60) with �=�k;

(3) Set �k+1=(Id+hkdk)�k, where hk is a small positive real number.

The choice of the descent step hk is not an easy task. If too big, the algorithm is unstable; if too
small, the rate of convergence is insignificant. In order to refresh hk , we compare hk with hk−1.
If (dk,dk−1)H1 is negative, we should reduce the step; on the other hand, if dk and dk−1 are very
close, we increase the step. In addition, if reversed triangles appear when moving the mesh, we
also need to reduce the step.

In our algorithm, we do not choose any stopping criterion. A classical stopping criterion is to
find whether the shape gradients ∇ J in some suitable norm is small enough. However, since we
use the continuous shape gradients, it is hopeless for us to expect very small gradient norm because
of numerical discretization errors. Instead, we fix the number of iterations. If it is too small, we
can restart it with the previous final shape as the initial shape.

4.2. Numerical examples

To illustrate the theory, we wish to solve the following minimization problem:

min
�

1

2

∫ 1

0

∫
�

|y−yd |2 dx dt (61)
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subject to

�ty−��y+Dy ·y+∇ p = f in �×(0,1)

divy = 0 in �×(0,1)

y = 0 on �S×(0,1)

y = y∞ on �D×(0,1)

y(0) = 0 in �

(62)

where D :={(x, y)∈R2 : x2+ y2�0.64}, and the shape of the body S is to be optimized. We choose
the velocity y∞ =(0.15y,−0.15x)T and the body force f=( f1, f2)T:

f1 = − 45x

31
√
x2+ y2

+ �t y(15x2+15y2−1)

5(x2+ y2)3/2

+ 1

25
t2x

(
−46−25x2−25y2− 1

x2+ y2
+ 12√

x2+ y2
+60

√
x2+ y2

)

f2 = − 45y

31
√
x2+ y2

− �t x(15x2+15y2−1)

5(x2+ y2)3/2

+ 1

25
t2y

(
−46−25x2−25y2− 1

x2+ y2
+ 12√

x2+ y2
+60

√
x2+ y2

)

The target velocity yd is determined by the data f,y∞, and the target shape of the domain
�. Our aim is to recover the shape of S which is a circle: �S={(x, y) : x2+ y2=0.04}.

Figure 1. Initial mesh with 125 nodes.
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Figure 2. �=0.1 and CPU time: 124.531 s.
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Figure 3. �=0.01 and CPU time: 120.125 s.
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Iteration: 27
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Figure 4. �=0.001 and CPU time: 622.813 s.
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Figure 5. Convergence history for �=0.1,0.01, and 0.001.
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The Navier–Stokes system (4) and the adjoint system (48) are discretized by using a mixed
finite element method. Time discretization is effected using the backward Euler method and we
assume that the time interval [0,1] is divided into equal intervals of duration �t=0.05. Spatial
discretization is effected using the Taylor–Hood pair [19] of finite element spaces on a triangular
mesh, i.e. the finite element spaces are chosen to be continuous piecewise quadratic polynomials for
the velocity and continuous piecewise linear polynomials for the pressure. Our numerical solutions
are obtained under FreeFem++ [20] and we run the program on a home PC.

We choose the initial shape of S to be elliptic: {(x, y) : x2/9+ y2/4= 1
25 }, and the initial finite

element mesh was shown in Figure 1.
Figures 2–4 give the comparison between the target shape with iterated shape for the viscosity

coefficients �=0.1,0.01, and 0.001, respectively. In case of �=0.1,0.01, we have fine results in
Figures 2 and 3. Unfortunately, we cannot a nice reconstruction for �=0.001 as in Figure 4.

Figure 5 represents the fast convergence of the cost functional for the various viscosity coeffi-
cients �=0.1,0.01, and 0.001.

5. CONCLUSION

In this paper, the shape optimization in the two-dimensional time-dependent Navier–Stokes flow has
been presented. We employed the weak implicit function theorem to obtain the existence of the weak
Piola material derivative; then we gave the description of the shape derivative. Hence, we derived the
structures of shape gradients for some time-dependent cost functionals by introducing the associated
adjoint state system. A gradient-type algorithm is effectively used for the minimization problem
in various Reynolds number flows. Further research is necessary on efficient implementations for
very large Reynolds numbers and real problems in the industry.
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